A visualization framework for team sports captured using multiple static cameras

Raffay Hamid *, Ramkrishan Kumar, Jessica Hodgins, Irfan Essa

Disney Research, Pittsburgh, Pittsburgh, PA 15213, USA

A R T I C L E I N F O

Article info
Received 15 October 2012
Accepted 21 September 2013
Available online 3 October 2013

Keywords:
Perceptual reasoning
Video analysis
Sports visualization
Multi-camera tracking
Data fusion
Computer vision

A B S T R A C T

We present a novel approach for robust localization of multiple people observed using a set of static cameras. We use this location information to generate a visualization of the virtual offside line in soccer games. To compute the position of the offside line, we need to localize players’ positions, and identify their team roles. We solve the problem of fusing corresponding players’ positional information by finding minimum weight K-length cycles in a complete K-partite graph. Each partite of the graph corresponds to one of the K cameras, whereas each node of a partite encodes the position and appearance of a player observed from a particular camera. To find the minimum weight cycles in this graph, we use a dynamic programming based approach that varies over a continuum from maximally to minimally greedy in terms of the number of graph-paths explored at each iteration. We present proofs for the efficiency and performance bounds of our algorithms. Finally, we demonstrate the robustness of our framework by testing it on 82,000 frames of soccer footage captured over eight different illumination conditions, play types, and team attire. Our framework runs in near-real time, and processes video from 3 full HD cameras in about 0.4 s for each set of corresponding 3 frames.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recent sports analysis and visualization systems have transformed viewers’ understanding and appreciation of the game, and have created a new industry [1,20]. However, many analysis techniques and graphical additions require significant human input. Automatically inferring the state of a multi-player game remains an open challenge, especially when the context of the game changes dynamically without discrete plays (e.g., soccer, field hockey, basketball). Our work targets this particular subset of sports.

A key technical challenge for sports visualization systems is to infer accurate player positions despite visual occlusions and clutter. One solution for this problem is to use multiple overlapping cameras [23,10], provided the observations from these cameras can be fused reliably. Our work explores this question of efficient and robust fusion of visual data observed from multiple synchronized cameras.

The main theoretical contribution of our work is a novel class of algorithms that fuse the location of players observed from multiple cameras by iteratively finding minimum weight K-length cycles in a complete K-partite graph. Each partite of the graph corresponds to one of the K cameras, whereas each node of a partite encodes the position and appearance of a player observed from a particular camera. The edge-weights in the graph are a function of similarity between the detected players in different camera-pairs, and their corresponding ground plane distances (see Section 3.5). We model the correspondence between a player’s blobs observed in different cameras as a K-length cycle in this graph (see Fig. 1 for illustration).

Another important challenge in sports visualization is the use of player positions to generate visualizations that might be informative for the viewers, coaches, and players. While there has been a lot of work in this regard (see e.g. [22,27,28,37,17], and the references therein), here we propose an end-to-end visualization framework that is different from previous works in a few important ways.

First, our goal is to generate sports visualizations, and not to develop a decision making system [15,17]. Second, the design principle of our system is to use off-the-shelf cameras in a framework that is readily deployable to different playing locations. Current pan-tilt-zoom (PTZ) camera based visualization systems (as used in American Football for instance) employ non-vision based technology, that is expensive and not readily available. On the other hand, using a purely vision based PTZ camera system would require maintaining full camera calibration throughout a game, which is still an open research problem [39,2]. We therefore focus...
on using only static cameras, which requires only planar homographies that can be readily computed at the start of a game. Finally, we are interested in generating visualizations with minimal human supervision. This approach is different from previous visualization systems [26,9] that usually work off-line, and require significant manual supervision.

The particular visualizations we have developed include displaying a virtual offside line in soccer games, highlighting players in passive offside positions, and showing players’ motion patterns accumulated over time. To demonstrate the robustness of our framework, we present results on 82,000 frames of soccer footage captured over eight different illumination conditions, play types, and team uniform colors. The variation in the illumination conditions we tested include naturally lit (morning, afternoon, evening, sunny, cloudy) and artificially lit (night time) fields. The play types we considered include drills and regular games. The teams we considered in our testing include different combinations of red, green, yellow, white, and blue team-uniforms. More details about these experimental variations can be found in Section 4.

2. Multi-view data fusion

Data fusion using multiple information sources is a thoroughly studied problem [13]. Broadly speaking, most of the previous work in data fusion may be categorized into low-level (sensor-level) fusion [12,38], mid-level fusion [31], and high-level (decision-level) fusion [35,5].

Some of the recent work on fusing data from multiple cameras in order to localize and track multiple people has focused on combining low-level sensor data to achieve robust inference [24,29,8]. In this work, however, we focus on mid-level fusion that combines local inference from each camera to reach a coherent global inference.

The problem of finding multi-object multi-frame correspondence has previously been viewed from a variety of different perspectives, including constraint optimization [19], greedy randomized search [36], and graph based approaches [33]. The particular graph structure that has been most frequently used is the bi-partite graph [34]. The techniques for optimization for this particular graph structure are well studied [16]. However, using a bi-partite graph structure to model correspondences across more than two information sources is a greedy approximation which naturally results in sub-optimal result. To overcome the constraints posed by the bi-partite structure, there have been some recent attempts to use complete K-partite graphs [18,32].

Our approach is different from these existing methods in two important ways. First, given the temporal constraints of previous problems, they have used graphs with directed edges, which restricts their search space, and makes the solution dependent on the order of individual graph partites. As we fuse data at a per-frame level, our problem does not pose temporal constraints, requiring us to use undirected graphs. Therefore our solution is more general in that it explores a larger search space, while being independent of the order of individual graph-partites. Second, most previous approaches have used an acyclic graph structure, however the graph structure we use involve loops.

In the remaining part of this section, we provide details regarding the modeling and analysis of our problem.

2.1. Problem statement

Given a complete K-partite graph G, find the minimum weight cycle c ∈ G, such that c passes through each k ∈ K once and only once.

A complete K-partite graph and a node-cycle are shown in Fig. 2a and c respectively.1 Each partite of G corresponds to one of the K cameras, whereas each node of a partite encodes the position and appearance of a player observed from a particular camera. A cycle c in G represents a correspondence among observations of a player in different cameras. The goodness of a correspondence is ranked based on the weight of its cycle – smaller weight cycles imply better correspondence.

As the number of players at any given instant of time is not known, we use the greedy heuristic of iteratively finding the longest (length K), and most cohesive (least weight) cycle, and remove it from our original graph G. This operation is repeated until there are no more K-length cycles that are also more cohesive than a pre-defined threshold. We repeat this procedure to iteratively find and remove all the K length cycles. This process continues until there are no more non-trivial cycles in the graph.

1 The terms partite and tier will be used interchangeably from hereon.
2.2. Naive solution – brute force search

A naive solution to our problem would be to first enumerate all \(K \)-length cycles in the graph, and then search for the minimum weight cycle in a brute force manner. With \(n \) nodes in each of the \(K \) tiers, the total number of cycles would be \(O(n^K) \). Recall that here \(K \) represents the number of cameras and \(n \) denotes the number of cameras observed in each of the \(K \) cameras. Even for relatively small values of \(n \) and \(K \), this solution is expensive,\(^2\) and a more efficient solution is therefore needed.

2.3. Exploiting problem characteristics

Our problem exhibits two key characteristics that can be exploited to create a more efficient solution.

1 – Optimal sub-structure: The property of optimal sub-structure implies that an optimal solution of a problem can be constructed from optimal solutions of its sub-problems. More specifically, in our case:

Lemma 1. A sub-path \(p \) between nodes \(\{u, v\} \subseteq c \) is the shortest path between \(u \) and \(v \)[7].

2 – Overlapping sub-problems: The property of overlapping sub-problems implies that a problem can be divided into sub-problems which can be re-used several times. More specifically, in our case:

Lemma 2. A shortest path between nodes \(u \) and \(v \) is less than or equal to the shortest path between \(u \) and an intermediate node \(w \), and the shortest path between \(w \) and \(v \)[7].

These properties enable us to use dynamic programming approach of updating of the solution-set from one step to the next in an incremental manner. This observation allows us to have solutions that range from maximally to minimally greedy in terms of the number of graph-paths explored at each iteration. The globally optimal solution of our problem is NP-hard for \(k \geq 3 \)[32]. Therefore, the ability to choose an approximate solution given the application requirements of search efficiency versus optimality can be quite useful in practice.

\(^2\) For example, a setup with 5 cameras observing 15 players would require searching through 91,125,000 cycles at each time-step.

2.4. From cycles to paths

As our problem is cyclic in nature, the paths we find must start and end at the same node. With traditional dynamic programming, there is no guarantee that the shortest path returned by the algorithm would necessarily end at the source node. We therefore need to modify our graph representation such that we satisfy the cyclic constraint of our problem, while still using a dynamic programming based scheme.

Assume the size of all nodes \(V \subseteq G \) is \(n \). For each node \(v \subseteq V \), we can construct a subgraph \(G_v \) with \(K+1 \) tiers, such that the only node in the 1st and the \((K+1)\)st tier of \(G_v \) is \(v \). Besides the 1st and the \((K+1)\)st tiers of \(G_v \), its topology is the same as that of \(G \) (see Fig. 2b). Note that the shortest cycle in \(G \) involving node \(v \) is equivalent to the shortest path in \(G_v \) that has \(v \) as its source and destination (see Fig. 2c). Our problem can now be re-stated as:

Modified problem statement: Given \(G \), construct \(G_v \) \(\forall v \subseteq V \). Find the shortest \(K \) length paths \(P = \{p_f, g_v \subseteq G_v \forall v \subseteq V \} \) that span each tier once and only once. Find the shortest cycle in \(G \) by searching for the shortest path in \(P \).

We now present a class of algorithms for finding the shortest path \(p_f \subseteq G_v \). The overall shortest cycle in \(G \) can then be found by repeating this process \(\forall v \subseteq V \).

2.5. Finding the shortest path in \(G_v \)

2.5.1. Notations and definitions

Let \(T \) be the set of all tiers \(\subseteq G \), and \(t_v \) be the tier of a node \(v \subseteq V \). Let \(P_{T_v, k-1} \) denote the shortest \(k-1 \) length path from source to \(v \) and let \(T_{k-1} \) denote the set of tiers covered by \(P_{T_v, k-1} \). Let \(C_{T_{k-1}} \) denote the cost of \(P_{T_v, k-1} \). Similarly, let \(P_{T_{k-1}, k-1} \) denote the best \(k-1 \) length path from the source to \(v \) that does not pass through \(t_v \), and let \(T_{k-1} \) denote the set of tiers covered by \(P_{T_{k-1}, k-1} \). Let \(C_{T_{k-1}} \) denote the cost of \(P_{T_{k-1}, k-1} \). We define the neighborhood of \(u \) as:

\[
\nu \in N(u, k) \text{iff } \begin{cases} t_u \neq T_{k-1} \\ t_{u} \neq t_v \end{cases}
\]

The notion of \(N(u, k) \) for a node \(u \subseteq G \) is illustrated in Fig. 3a. Each node with a cross is included in a best path that spans the tier of \(u \), and can therefore not be further used by \(u \). Nodes with checks are best paths of length two that do not span the tier of \(u \), and can therefore be used by \(u \). Note that in Fig. 3, the lines with blocks at the end highlight the path stored in a particular node.
Algorithm 1: Maximally Greedy Approach

\[
\begin{align*}
\text{for } k = 2, 3, \ldots, K & \text{ do} \\
\text{for all } u \in V & \text{ do} \\
S = \{\phi\}, Q = \{\phi\} \\
\text{for all } v \in N(u, k) & \text{ do} \\
S = S \cup \{C(u, k - 1) + w(v, u)\}/\text{Set of costs} \\
Q = Q \cup \{P(v, k - 1) + (v, u)\}/\text{Set of paths} \\
\text{end for} \\
I = \text{index}(\min(S)); S(u, k) = S[I]; Q(u, k) = Q[I] \\
\text{end for} \\
\text{end for} \\
S = S \cup \{C(u, k) + w(v, s)\} \\
Q = Q \cup \{P(v, k) + (v, s)\} \\
\text{end for} \\
I = \text{index}(\min(S)); C_{\text{best}} = S[I]; P_{\text{best}} = Q[I];
\end{align*}
\]

2.6. Algorithm 1: Maximally greedy

Algorithm 1 considers the best \(k - 1 \) length path stored in each of the neighbors of a node \(u \) in order to compute the best \(k \) length path from the source to \(u \). An illustrative example of the flow of Algorithm 1 is given in Fig. 3b.

Algorithm complexity: The complexity of Algorithm 1 for finding shortest path in \(G_v \) is \(O(n^2K) \) because finding the best length \(l \) path to a particular node requires searching over \(O(n) \) paths of lengths \(l - 1 \) in the neighborhood of the node being considered. Finding a shortest path of length \(K \) would therefore require \(O(nK) \) operations, because this requires \(K \) operations of complexity \(O(n) \), one for each path length from 1 to \(K \). As this process is done for each of the \(n \) nodes in \(G_v \), the complexity of finding the overall shortest path in \(G_v \) is \(O(n^3K) \). Furthermore, since there are \(n \) subgraphs \(G_v \) in \(G \), the complexity for finding the shortest cycle in \(G \) is \(O(n^5K) \).

Bottleneck cases: We need to find paths in \(G_v \) that span each tier once and only once because Algorithm 1 proceeds in a maximally greedy manner. There can be cases where Algorithm 1 cannot query a certain node \(v \) anymore, as the best \(k - 1 \) length path at \(v \) already passes through \(t_u \) (Fig. 4a). If best paths at \(\{v \in V \mid u \} \) already span \(t_u \), Algorithm 1 cannot converge further. We can therefore state the convergence condition as:

\[
|\{N(u, k)\}| > 0 \forall (u, k)
\]

Here convergence does not necessarily imply optimality, i.e., the state where the solution returned by an algorithm is the same as that of exhaustive search (Section 2.2). Because of the greedy search policy of Algorithm 1, the invariant of Lemma 1 does not always hold. Algorithm 1 therefore greedily attempts to find the best solution that it can, and as often as it can.

2.7. Algorithm 2: Exclude each tier at least once

In Algorithm 1, if \(P(v, k - 1) \) spans \(t_u \), then the subset of nodes \(\{u \in t_u \} \) cannot use this path anymore. We therefore need alternate paths ending at \(v \) that do not pass through \(t_u \) such that nodes \(\{u \in t_u \} \) could use these paths in later iterations. Algorithm 2 attempts to achieve this goal by keeping the minimal set of best \(k - 1 \) length paths that exclude each tier at least once (a routine denoted as “Rank” in Algorithm 2). Fig. 4b shows how Algorithm 2
keeps alternate paths to allow u to have a larger set of neighbors than that of Algorithm 1.

Algorithm 2. Leave Each Tier Out At least Once

for k = 2, 3, ..., K do
 for all u ∈ V do
 S = {φ}, Q = {φ}
 for all v ∈ N(u, k) do
 S = S ∪ {C[v,k-1]+w(v,u)}
 Q = Q ∪ {P[v,k-1]+(v,tv)}
 end for
 Sort (S); Rank (Q); T = (T\t_k)
 for all t_k ∈ T do
 Find P[v,k,t_k] = Cost(P[v,k,t_k])
 end for
 for all v ∈ V do
 S = S ∪ {C[v,k], φ} + w(v,s)
 Q = Q ∪ {P[v,k], φ} + (v,s)
 end for
end for

Algorithm complexity: The complexity of Algorithm 2 for finding p_u ∈ G_2 is O(n^2K^2log (nk)+n^2K^3). Note that the outer two loops of Algorithm 2 are of O(nk) complexity. For each iteration of the inner loop, the two key procedures that need to be performed are (i) sorting the neighborhood paths based on their costs, and (ii) finding the path and cost-set for each tier in T except for the tier of the current node. The complexity of the sorting procedure is O(nKlog (nk)), while that of finding the new path and cost-set is O(nK^2). Therefore the overall complexity of Algorithm 2 for finding p_u ∈ G_2 is O(n^2K^2log (nk)+n^2K^3). Furthermore, because there are n sub-graphs G_v in G, the complexity for finding the shortest cycle in G using Algorithm 2 is O(n^2K^2log (nk)+n^2K^3).

Bottleneck cases: If all the paths available to a node u have a particular tier (say t_k) in common, Algorithm 2 may still not always be able to exclude each tier at least once. In the next iteration, the nodes in t_k would not be able to query u (see Fig. 4c for illustration). If this is true ∀u, Algorithm 2 would terminate prematurely.

2.8. Algorithm 3: Combinatorial approach

Algorithm 3 maintains the best k − 1-length paths for all combinations of tiers such that nodes in all tiers can always query their neighbors. Fig. 4d shows how this approach avoids a bottleneck case for Algorithm 2. Algorithm 3 is guaranteed to have |N(u, k)| = |V \ {v | tv = t_k}|∀u, k), and always satisfies Lemma 1. It therefore guarantees both convergence and optimality. We now provide a proof for these claims.

2.8.1. Convergence of Algorithm 3

We first prove that the convergence condition (as defined in Eq. (2)) for Algorithm 3 would always be satisfied.

Theorem. Algorithm 3 never returns a NULL solution.

Lemma. ∀u ∈ G, the set N(u, k) satisfies the constraint:

|N(u, k)| = |V \ {v | tv = t_k}| (3)

Proof. A node v ∈ N(u, k), iff ∃ a path of length k - 1 that ends at v and does not include t_v. The total number of k - 1 length paths stored at v that do not include t_v is K - 2C_k-2. Therefore, Eq. (3) would hold if:

K - 2C_k-2 ≥ 1∀k

Eq. (4) holds if k ≤ K, which is always true. □

Algorithm 3. Combinatorial Approach

2.8.1. Convergence of Algorithm 3

We now prove the optimality of Algorithm 3.

Theorem. Algorithm 3 always returns the optimal solution.

Proof. The optimality of Algorithm 3 can be proved if it could be shown that:

• A sub-path of a shortest path is a shortest path itself, and
• Shortest sub-paths for any path length are available.

Lemma 1. If s = (v_k, t_k), ..., (v_2, t_2), ..., (v_1, t_1) is the shortest k-length path that ends at v_k and involves tiers {t_k, t_2, ..., t_1}, then s = (v_k, t_k), ..., (v_2, t_2), ..., (v_1, t_1) is the shortest path that ends at v_k and involves tiers {t_k, t_2, ..., t_2}.

Proof. Since G = (V, E, w) has non-negative weights, w: E → R^+, the triangular inequality implies that the sub-path of a shortest path is the shortest sub-path itself [7].

Lemma 2. The best k − 1 length path ending at v, ∀v ∈ V that includes any subset of k − 2 tiers is always available.

Proof by induction: Assume Lemma 2 is true for paths of length k − 2. We define T_k-3 as the set of all subsets of length k − 3 tiers, and assume that T_k-3 is available at every node. Now, consider a set of length k − 2 tiers T_k-2. Let t_k ∈ T_k-2, then T_k-2 \ t_k ∈ T_k-3. Any node
in t_k will have the best path of length $k-2$ that includes $T_{k-2} \setminus t_k$. Algorithm 3 accumulates all best paths including $T_{k-2} \setminus t_k$ tiers, and sorts them to find the best overall path involving T_{k-2}.

Algorithm complexity: The number of K-length paths maintained at each node by Algorithm 3 is 2^{K^2}. Recall that at each node, Algorithm 3 maintains the best $k-1$ length paths for all combinations of tiers in order to compute k-length paths. The number of paths maintained at each node by Algorithm 3 can therefore be given as:

$$\sum_{i=0}^{K-1} \binom{K}{i} C_i = 2^{K^2}$$

According to the Binomial theorem [6],

$$\sum_{i=0}^{K-1} \binom{K}{i} C_i = 2^{K^2}$$

Eq. (5) can be written in terms of the Binomial theorem (Eq. (6)) if we choose $x = y = 1$. Therefore, summing up Eq. (5) results in 2^{K^2}. The complexity of Algorithm 3 for finding the shortest path in G_s is $O(n2^{K^2})$, and its overall complexity for finding the shortest cycle in G is $O(n^22^{K^2})$.

2.9. Empirical analyses

To predict the behavior of our algorithms for applications with different number of cameras, we now present simulation experiments using a complete K-partite graph with 5 nodes in each tier, and the number of tiers varying from 3 to 12. For each set of tiers, we generated 1000 random graphs by sampling edge weights from a normal distribution $\mathcal{N}(0,1)$. Fig. 5a shows that Algorithm 1 and Algorithm 2 always return an optimal solution for tiers ≤ 4 and ≤ 6 respectively. Fig. 5b shows that bottleneck occurs for Algorithm 1 quite rapidly, while Algorithm 2 converges more than half the time for tiers ≤ 8. Fig. 5c highlights the greedy nature of Algorithm 1 and 2 which do not guarantee optimality even when they converge. Algorithm 3 however consistently shows convergence and optimality, but costs a reduction in efficiency (Fig. 5d).

3. Application: player localization using multiple cameras

As an application of our proposed algorithms, we present a computational framework for localization of multiple soccer players captured using three synchronized overlapping static cameras. We captured two soccer data-sets on different soccer fields in order to maximize the data variability, and to test the generalizability of our framework more rigorously. We now summarize the main attributes of these data-sets:

Data-set 1: For the first data-set, we erected 40 feet high scaffolds, and mounted synchronized 1080P-HD cameras on them. The soccer field dimensions for this setup were 204 x 121 feet. We used three static cameras to capture one half of this field. The camera positions with respect to the field are shown in Fig. 1a. We captured different colors for the team jerseys (red, yellow, blue, green, and white), types of soccer plays (matches, drills), and lighting conditions (morning, afternoon, and evening, all in natural lighting).

Data-set 2: For the second data-set, we used scissor lifts with adjustable heights to mount synchronized 720P-HD cameras on them. The soccer field dimensions for this setup were 344 x 225 feet. Similar to the first data-set, we used three static cameras to capture one half of this field. We collected two games with heights of the lifts set at about 25 feet. Furthermore, for a third game, the position of camera 3 was changed such that it was on the end line opposite to camera 2.

The main steps of our computational framework are illustrated in Fig. 6, and are explained below.

3.1. Background removal

We begin by adaptively learning per-pixel Gaussian mixture models for scene background. The probability of a background pixel having value x_i is given as:

$$p(x_i|\text{background}) = \sum_{j=1}^{K} w_j \rho_j$$

where ρ_j is the jth Gaussian component, and w_j is its weight. The term ρ_j is given as:

$$\rho_j(x_i; \mu_j, \Sigma_j) = \frac{1}{(2\pi)^{d/2} |\Sigma_j|^{1/2}} \exp\left(-\frac{1}{2} (x_i - \mu_j)^T \Sigma_j^{-1} (x_i - \mu_j)\right)$$

where μ_j and Σ_j are the mean and covariance of jth component. These models are used for foreground extraction by thresholding appearance likelihoods of scene pixels [21].

Note that there exists a trade-off between how often the background appearance model is updated, and how often a slowly or occasionally moving object is incorrectly assigned to be part of the background. This tradeoff is particularly important to us because players move with variable speeds – in fact some players (especially the goalie) could remain stationary for a few seconds, introducing error in our inference regarding who is the second last defender. To solve this challenge, we maintain two background models – the first to learn the appearance of the background over the next t seconds, while the second (the one we learned over the last t seconds) to discriminate between the background and foreground objects. We swap these two background models every t seconds. This mechanism allows us to maintain a relatively current model of what the background looks like, without misclassifying the slow-moving objects.

3.2. Shadow removal

While there are numerous appearance-based methods for shadow removal [30], they work best for relatively soft shadows. In soccer games however, shadows can be quite strong. We therefore rely on geometric constraints of our multi-camera setup for robust shadow removal.

Consider Fig. 7, which illustrates that the shadow pixels of the player are view invariant. Here invariance is brought about by the fact that the shadow pixels are projected on the common ground plane viewed by multiple cameras. Given the homographies between the field image seen from multiple views, we can transform the pixels of the soccer field as viewed by one camera to other cameras. We use these homographies to remove shadows by warping the extracted foreground in one view onto another, and filtering out the overlapping pixels [23,24,10].

For our setup, we begin by finding 3×3 planar homographies $H_{i=p,b}$ between each pair of views p_a and p_b such that for any point pair p_a and p_b in p_a and p_b, the following holds:

$$p_b = H_{i=p,a} \cdot p_a$$

Recall that 2-D homographies have 8 degrees of freedom (9 entries in the $H_{i=p,a}$, with common scale factor). To determine each $H_{i=p,a}$ we require at least 4 pairs of corresponding points in respective view...

3. Recall that here a node represents an observation in one of the cameras, while a tier corresponds to a particular camera.

4. For K cameras observing a soccer field, we require K^2 homographies.
pairs [14]. In practice we use a 15 point correspondence across the three cameras to estimate the mapping between their field regions. These points are shown in Fig. 8, and were manually marked.

When a player’s blob in a particular view is occluded by the projection of the blob of another player, or their shadow in a different view, relying simply on these geometric constraints might result in losing image regions belonging to the occluded parts of the player in the considered view. To avoid this challenge, we apply chromatic similarity constraints of original and projected pixels before classifying them as shadow versus non-shadow. The intuition here is that the appearance similarity of shadow pixels across multiple views is more than the similarity for non-shadow pixels.

3.3. Player tracking in individual cameras

We track the player blobs using a particle filter based blob tracker [25]. We represent the state of each player using a multi-modal distribution, which is sampled by a set of particles. To propagate the previous particle set to the next, three steps are performed at each time-step:

(a) Number Of Graph Tiers
(b) Number of Graph Tiers
(c) Number Of Graph Tiers
(d) Number Of Graph Tiers

Fig. 5. (a) Percentage of times that each algorithm returned optimal solution. (b) Percent convergence. (c) Percent convergence and optimal solution. (d) Log-based execution time.

Fig. 6. Illustration of the main steps of our framework. The shadows in background subtraction step have been manually colored orange here for better visualization. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Selection: A particle set $s^n_0: n = \{1 \rightarrow N\}$ is sampled from prior density $p(\mathbf{x}_t, \mathbf{z}_t)$ [25]. Here \mathbf{x} and \mathbf{z} are object-state and observation vectors.

Prediction: Predicted states of particles $s^n_0: n = \{1 \rightarrow N\}$ are generated from $s^n_0: n = \{1 \rightarrow N\}$ using the dynamical model. The dynamics are applied to state parameters as:

$$ s^n_t = s^n_{t-1} + A \cdot \mathbf{v}_{t-1} + B \cdot \mathbf{w}_t \quad \text{where} \quad \mathbf{w}_t \sim N(0, \Sigma) $$

(10)

Here \mathbf{v}_{t-1} is the velocity vector obtained from the previous steps, while A and B are matrices representing the deterministic and stochastic components of the dynamical model.

Measurement: We compute the probability of the state $p(s^n_i = \mathbf{z}_t | \mathbf{x}_t)$ and normalize the probabilities of all particles so that they sum to one:

$$ \pi^n_i = \frac{p(\mathbf{z}_t | \mathbf{x}_t = s^n_i)}{\sum_{i=1}^{N} p(\mathbf{z}_t | \mathbf{x}_t = s^n_i)}. $$

(11)

These weights are used in the next frame for particle selection. Based on the discrete approximation of $p(\mathbf{z}_t | \mathbf{x}_t = s^n_i)$, different estimates of the best state at time t can be devised. We use the maximum likelihood state

$$ \hat{\mathbf{x}}_t = \arg \max \pi^n_i = \arg \max_{\mathbf{x}_t} p(\mathbf{z}_t | \mathbf{x}_t = s^n_i) $$

(12)

as the tracker output at time t (for more details, see [25]).

3.4. View dependent blob classification

We classify the tracked blobs on a per-frame and per-view basis. We pre-compute the hue and saturation histograms of a few (10–15) player-templates of both teams as observed from each view. During testing, we compute the hue and saturation histograms for the detected blobs, and find their Bhattacharyya distances from the player-templates of the corresponding view [3]. We classify each blob into offense or defense based on the label of their nearest neighbor templates. The pipeline of blob-classification for one particular view is shown in Fig. 9.

3.5. Data fusion for player localization

Ideally, one would expect that the homographies between pairs of image planes, and between the image plane and the ground to be precise enough to localize players’ positions accurately. In
An important foul in soccer is the offside call, where an offense player receives the ball while being behind the second last defense player (SLD). We want to detect the SLD player, and to draw an offside line underneath him/her. We now summarize our results on our two different data-sets. To the best of our knowledge, this is the most thorough test of automatic offside-line visualization for soccer games to date.

Results on data-set 1: For the first data-set, we tested our framework on around 60,000 frames (2000 s) for five different illumination conditions, play types, and teams’ clothing colors (see Fig. 11). We compared the performance of our proposed system with that of finding the SLD player in each camera individually and with naively fusing this information by taking the average of those locations (see Table 1).

Our fusion mechanism outperforms the other approaches with an average accuracy of 92.6%. The naive fusion produces an average accuracy of 75.7%. The average accuracy across all three individual cameras over all five sets is 82.7%. Note that the average accuracy of camera 3 (91%) is quite close to the accuracy of our proposed fusion mechanism (93%). While these results do imply that the accuracy achievable from a single camera can be comparable to that obtained from our proposed mechanism, knowing the optimal camera position a priori to get that high level of accuracy from a single camera is generally quite difficult. We therefore believe that the expected individual accuracy of all three cameras (83%) is a more accurate estimate of the measure of accuracy of individual cameras, and that fusing information using our mechanism to achieve a more robust inference is indeed a valuable solution.

Results on data-set 2: For the second data-set, we tested our framework on around 22,000 frames (367 s) for three different illumination conditions, and teams’ clothing colors (see Fig. 12). Recall that the dimensions of the soccer field used in the second data-set are more than twice that used in the first data-set (Section 3). Moreover, as noted in Section 3, the resolution of the cameras in data-set 2 was only half of that used in data-set 1 (720P as opposed to 1080P). This additional field size and lower camera resolution imply that the players in data-set 2 generally occupy fewer pixels, making the task of player tracking more challenging.

The accuracy, precision, and recall rates of our framework on data-set 2 are summarized in Table 2. Our overall accuracy for
the 3 games is around 82%. Note however that our average accuracy for the first two games is around 90% (85% and 94% individually), while the accuracy for the third game is around 66%. The third game is particularly challenging because it was recorded right before a rain storm, and the illumination conditions were varying very rapidly between sunny, very cloudy and dark. Due to this unusually rapid change in the illumination conditions, the process of background subtraction was extremely challenging.

Furthermore, the height of the cameras for the third game was set to only around 25 feet (as opposed to 60 feet for the first two games). This lower camera height resulted in more pronounced player occlusion, which made the task of player tracking more challenging.

Run-time analysis: We performed a run-time analysis of our framework (see Fig. 13). The average time to process images from all three cameras is roughly 0.4 s. These results were achieved on a
For background subtraction and shadow removal, we used multi-threading where individual threads were generated for each of the three cameras. We used the optimized Intel integrated performance primitive library to further enhance our code performance.

As can be observed in Fig. 13, the background subtraction algorithm requires the most time because we are doing per-pixel learning of Gaussian Mixture models for the appearance of the scene. Using the GPU instead of the CPU would reduce this computational time. Our initial experiments for using the GPU show a fivefold performance gain. The second most time consuming step is shadow removal. The reason for this latency is that because we currently have three cameras, we have to project all pixels from one image to another for six times. Note that the rate of increase in the number of times we have to project pixels of one image to all other cameras is sub-quadratic in the number of cameras. While this is encouraging from a complexity perspective, we believe there is a need to improve the time taken for each projection of one image plane onto another. Because plane projections mostly require matrix arithmetics, we believe this process could be ported to GPU based processing in a straightforward way. We plan to explore this direction in the future.

4.2. Passive offside visualization

Offence players can be in an offside state either actively (when they get directly involved in the play while being behind the SLD), or passively (when they are present behind the SLD and not directly involved in the play). Fig. 14 is a graphic generated using our framework which shows an example where the offense player in a passive offside state is automatically highlighted. Visualizations such as these can be used in assisting viewers to predict whether or not an offside foul is likely to take place.

<table>
<thead>
<tr>
<th>Frames</th>
<th>Camera 1</th>
<th>Camera 2</th>
<th>Camera 3</th>
<th>Naive Fusion</th>
<th>Proposed fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%P</td>
<td>%R</td>
<td>%A</td>
<td>%P</td>
<td>%R</td>
</tr>
<tr>
<td>Game 1</td>
<td>13,500</td>
<td>86.1</td>
<td>97.2</td>
<td>84.7</td>
<td>93.2</td>
</tr>
<tr>
<td>Game 2</td>
<td>11,500</td>
<td>62.1</td>
<td>99.1</td>
<td>61.8</td>
<td>81.5</td>
</tr>
<tr>
<td>Game 3</td>
<td>7500</td>
<td>72.3</td>
<td>100</td>
<td>72.3</td>
<td>74.2</td>
</tr>
<tr>
<td>Game 4</td>
<td>13,500</td>
<td>77.8</td>
<td>99.4</td>
<td>78.4</td>
<td>79.7</td>
</tr>
<tr>
<td>Game 5</td>
<td>13,500</td>
<td>86.1</td>
<td>100</td>
<td>86.1</td>
<td>85.5</td>
</tr>
</tbody>
</table>

4-core machine. For background subtraction and shadow removal, we used multi-threading where individual threads were generated for each of the three cameras. We used the optimized Intel integrated performance primitive library to further enhance our code performance.

As can be observed in Fig. 13, the background subtraction algorithm requires the most time because we are doing per-pixel learning of Gaussian Mixture models for the appearance of the scene. Using the GPU instead of the CPU would reduce this computational time. Our initial experiments for using the GPU show a fivefold performance gain. The second most time consuming step is shadow removal. The reason for this latency is that because we currently have three cameras, we have to project all pixels from one image to another for six times. Note that the rate of increase in the number of times we have to project pixels of one image to all other cameras is sub-quadratic in the number of cameras. While this is encouraging from a complexity perspective, we believe there is a need to improve the time taken for each projection of one image plane onto another. Because plane projections mostly require matrix arithmetics, we believe this process could be ported to GPU based processing in a straightforward way. We plan to explore this direction in the future.

4.2. Passive offside visualization

Offence players can be in an offside state either actively (when they get directly involved in the play while being behind the SLD), or passively (when they are present behind the SLD and not directly involved in the play). Fig. 14 is a graphic generated using our framework which shows an example where the offense player in a passive offside state is automatically highlighted. Visualizations such as these can be used in assisting viewers to predict whether or not an offside foul is likely to take place.

Table 1
Comparative results for offside line visualization (Set 1) – P, R and A denote precision, recall, and accuracy. We consider True Positives (TP) as frames where the second last defence player (SLD) is present and correctly detected. False Negatives (FN) are frames where the SLD is present but not detected. True Negatives (TN) are frames where the SLD is absent and not detected. False Positives (FP) are frames where the SLD is present and detected incorrectly, or the SLD is absent but still detected. Precision is defined as TP/(TP + FP), recall as TP/(TP + FN), and accuracy as (TP + TN)/(TP + TN + FP + FN).

<table>
<thead>
<tr>
<th>Frames</th>
<th>Camera 1</th>
<th>Camera 2</th>
<th>Camera 3</th>
<th>Naive Fusion</th>
<th>Proposed fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%P</td>
<td>%R</td>
<td>%A</td>
<td>%P</td>
<td>%R</td>
</tr>
<tr>
<td>Game 1</td>
<td>13,500</td>
<td>86.1</td>
<td>97.2</td>
<td>84.7</td>
<td>93.2</td>
</tr>
<tr>
<td>Game 2</td>
<td>11,500</td>
<td>62.1</td>
<td>99.1</td>
<td>61.8</td>
<td>81.5</td>
</tr>
<tr>
<td>Game 3</td>
<td>7500</td>
<td>72.3</td>
<td>100</td>
<td>72.3</td>
<td>74.2</td>
</tr>
<tr>
<td>Game 4</td>
<td>13,500</td>
<td>77.8</td>
<td>99.4</td>
<td>78.4</td>
<td>79.7</td>
</tr>
<tr>
<td>Game 5</td>
<td>13,500</td>
<td>86.1</td>
<td>100</td>
<td>86.1</td>
<td>85.5</td>
</tr>
</tbody>
</table>

Table 2
Data set 2: Results for offside line visualization – P, R and A denote precision, recall, and accuracy.

<table>
<thead>
<tr>
<th>Frames</th>
<th>Data-set 2</th>
<th>%P</th>
<th>%R</th>
<th>%A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game 1</td>
<td>7792</td>
<td>84.6</td>
<td>96.7</td>
<td>84.8</td>
</tr>
<tr>
<td>Game 2</td>
<td>8943</td>
<td>94.0</td>
<td>99.2</td>
<td>94.4</td>
</tr>
<tr>
<td>Game 3</td>
<td>4755</td>
<td>84.5</td>
<td>75.4</td>
<td>66.2</td>
</tr>
</tbody>
</table>
4.3. Visualizing players’ movement flow

Broadcast of soccer games only shows an instantaneous representation of the sport, with no visual record of what happened previously. There are two important challenges in having a lapsed representation of a game. First, automatic detection of players’ actions is hard. Second, summarizing these actions in an informative manner is non-obvious. To this end, we consider players’ movement as a basic representation of the state of a game [4], and use our framework to visualize development of a game over a window of time (see Fig. 15). Visualizing such holistic movements of players accumulated over time can potentially help viewers’ understanding of how a game is progressing, identifying the various defence and offence strategies being used, and predicting the subsequent game-plan for each of the teams.

5. Conclusions

We have presented a novel modeling and search framework for fusing evidence from multiple information sources as finding minimum weight K-length cycles in complete K-partite graphs. As an application of the proposed algorithm-class, we have presented a framework for soccer player localization using multiple synchronized static cameras. We have used this fused information to generate sports visualizations, including the virtual offside line, highlighting players in passive offside state, and showing players’ accumulated motion patterns. We have demonstrated the robustness of our framework by testing it on a large data-set of approximately 82,000 frames of soccer footage captured over eight different illumination conditions, play types, team attire, field sizes, and camera positions.

Some of our conclusions based on our results are given below.

- Representing correspondence among different observations of a particular player as a weighted cycle in a complete K-partite graph is sufficient to accurately fuse information from multiple sources. Note that there exist more strict representations of correspondence (e.g., a clique), and a cycle is a somewhat greedy correspondence representation. For our setting however, our empirical results show that representing correspondence in a greedy manner still results in accurate data fusion overcoming the challenges of occlusions and varying illumination.
Utilizing a mid-level data representation (player locations in each view) to fuse information from multiple sources (cameras) works reasonably accurately for overcoming the problem of player occlusion in tracking.

In this work have assumed that the playing field is a plane. This assumption should be made with caution, and it might be useful to treat larger fields in a by-part manner, considering each part as a separate planer surface.

Maintaining alternate background appearance models can help characterize the background scenes accurately, particularly if the illumination conditions in the scene change rapidly, or if different foreground objects move at significantly different speeds.

Using the view invariance property of shadow pixels to remove them can work quite well, particularly when the shadows are hard and cannot be removed using purely illumination based methods.

Employing Bhattacharyya distance over hue and saturation values as a similarity measure for player blob classification can result in quite accurate blob classification.

6. Current limitations and future work

There are a few research directions we would like to pursue in the future.

- Currently we perform search for each frame independent of the results from previous frames. In future work, we want to explore incorporating temporal dependency between observations over time to initialize our search procedure in each frame. This would help us improve the search efficiency and accuracy of our framework.

- We are currently modeling correspondences as cycles in complete K-partite graphs. In the future we would like to explore alternate models of correspondence (e.g., paths, and cliques) to see what impact do they have on the search optimality and efficiency tradeoff.

- We want to test our framework using a larger number of cameras. This experiment would give us a better sense of how many cameras are sufficient for our framework to perform well for different sized fields.

- An important question to explore is the required number of cameras as a function of camera height, and the impact this number has on the processing speed of our framework.

- We also want to perform a thorough quantitative analysis of the efficiency gain for using GPUs instead of CPUs.

- A qualitative factor for the usability of our framework is to analyze how frequently is our system able to actually perform correspondence finding problems. In particular, we would like to test our algorithms on the problems of feature matching for depth estimation, trajectory matching using multiple cameras, and motion capture reconstruction.

References

